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Reduction of optical chaos by a quantum correction in second-harmonic generation of light
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We consider the dynamics of second-harmonic generation of light in the context of chaos and order.
The system is driven and dissipative. A Lyapunov analysis of chaos, and bifurcation maps, are presented
and studied versus quantum corrections. We observe a reduction of chaos in the quantum case as well as
suppression of basins of attraction. The role of damping is determined.

PACS number(s): 05.45.+b, 42.50.Lc

I. INTRODUCTION

In recent years, there has been a great deal of interest
in the study of classically chaotic quantum systems. It is
predominantly conceded that quantization drastically
modifies classically chaotic behavior. For example,
suppression of chaos to quasiperiodicity is observed in
the quantum kicked rotator, whose classical counterpart
behaves chaotically [1-2]. Certain manifestations of
chaos become apparent in quantum dynamics [3-5] and
quantum optics [6—9]. It seems that Wigner’s formation
of quantum mechanics offers the simplest comparison be-
tween quantum and classical chaos in contradistinction
to the conventional procedure. The conventional way is
to study how a wave packet initially fixed around a cer-
tain position ¢ and momentum p follows the appropriate
classical trajectory. However, this involves a disadvan-
tage. Namely, the wave packet spreads in the course of
time and is no longer sharply fixed around a particular
position and momentum, rendering dubious the compar-
ison with the respective classical trajectory. To avoid
this spreading problem we can make use of the so-called
Wigner symbols, their being a quantum generalization of
classical variables. For example, we can compare the
time evolution of the Wigner symbols for the position §
and momentum P operators with the classical evolution
of the position ¢ and momentum p, respectively. Gen-
erally, Wigner’s formulation of quantum mechanics leads
to a c-number representation of the density matrix, that
is, to the quantum analog of a classical probability densi-
ty in (p,q) space. In quantum optics three kinds of c-
number functions are the most popular, namely, the P
representation, the Q function, and the Wigner function
W [10]. All these three functions are defined in
(a=p+iq, a*=p —iq) space instead of in (p,q) space.
This is due to the coherent state technique. The P repre-
sentation is related to normal ordering of the creation @
and annihilation @ operators, the Q function is related to
antinormal ordering of the operators, and the Wigner
function W is related to symmetric (Weyl) ordering. The
c-number approach makes it possible to treat quantum
systems in a “classical way,” including all their quantum
features and contrasting the quantum and classical dy-
namics within the framework of a phase picture. The
equations for the Wigner-like functions P and Q belong to
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the class of generalized Fokker-Planck equations whose
solutions are known only for some simple optical models.
The Wigner approach can also be used to study both
kicked dynamics (that is, a quantum map) and a continu-
ous flow. Kicked models are easier to analyze numerical-
ly than continuous models but are more difficult to verify
practically. On the other hand, continuous models seem
to be mathematically more cumbersome, resembling the
complexity of hydrodynamical systems. In the latter case
we usually make some truncations leading to a set of or-
dinary differential equations. Historically, for the first
time in the treatment of classical dynamical systems, a
truncation method has been used by Lorenz [11]. A simi-
lar truncation method can be used for generalized
Fokker-Planck equations if we note that these equations
generate a hierarchic and infinite set of ordinary
differential equations for statistical cumulants. The first
truncation always leads to equations having the form of
classical equations of motion. The second truncation
plays the role of the first quantum correction, etc. Re-
cently, the cumulant method has been applied to the
study of some aspects of classical and quantum chaos in
second-harmonic generation of light [12—-15] and an os-
cillator with Kerr nonlinearity [16]. To identify chaotic
behavior of a classical dynamical system it suffices to use
the maximal Lyapunov exponent (MLE). A quantum
analog of the Lyapunov exponent involving the Q func-
tion has been proposed by Toda and Ikeda [17]. Howev-
er, as we have already mentioned, the equation for the
Q (P, W) function is mathematically cumbersome and its
analytic solution is unknown for most nonlinear systems.
This poses additional difficulties when it comes to calcu-
lating the Lyapunov exponents. However, this problem
can be solved indirectly and approximately by finite cu-
mulant expansion [16], enabling us to use the classical
calculation method of MLE for equations with statistical
cumulants.

In this paper we consider the dynamics of a truncated
model of second-harmonic generation. Ours is based on a
Fokker-Planck equation for the quasidistribution func-
tion P(Q). The model proposed and the truncation pro-
cedure are briefly reviewed in Secs. II and III. In Sec. IV
we investigate the qualitative behavior of the model in
dependence on its characteristic parameters: the form of
the external driving field and the damping constants.
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The stability of our system (the appearance and disap-
pearance of the chaotic region) is studied with the help of
Lyapunov analysis. We observe a reduction of chaos in
the system, classically chaotic previous to quantum
correction. The whole dynamics is also presented in the
form of bifurcation maps and, for certain parameters, in
that of phase portraits in both classical and quantum
cases.

II. MODEL

Let us consider an optical system with two interacting
modes at the frequencies w,; and ®w,=2w,, respectively,
interacting by way of a nonlinear crystal with second-
order susceptibility. Moreover, let us assume that the
nonlinear crystal is placed within a Fabry-Pérot inter-
ferometer. Both modes are damped via a reservoir. The
fundamental mode is driven by an external field with the
frequency w; and amplitude F. The Hamiltonian for our
system is given by [18,19]
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where ﬁrev describes the reversible part of interaction,
and A, ., is the irreversible part respons1b1e for the loss
mechanism. The quantities @, (6 ); @, (62) are the pho-
ton annihilation (creation) operators for the fundamental
and second-harmonic modes, respectively. The parame-
ter Y is taken to be real and acts as the nonlinear coupling
constant between the two modes. Finally, the operators
b T, b(‘) are the boson annihilation (creation) operators
of the reserv01r The frequencies of the reservoir oscilla-
tions are denoted by Q" and the coupling constant be-
tween the optical and reservmr modes by K; ) The dy-
namics of the system (1) on eliminating the reservoir
Hamiltonian (3) is governed by the appropriate master
equation for the density operator p. The master equation
in the interaction picture leads to the following c-number
Fokker-Planck equation for the quasidistribution func-
tion @, [10,18,19],
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The quasidistribution function @, is defined as follows:
®-1)=P and ®,-_;,=Q. The function P, is deter-
mined in the complex plane (a;,a,,a},a3), where a; is
an eigenvalue of the annihilation operator @;, i.e.,
8;la;>=a;|a;). Here, |a;) is a coherent state. The ini-
tial condition for the Fokker-Planck equation is given by

D\ [ay(7),ay(7); 7] =0 =P [@1(0) =a;0,@,(0)=0;0] ,
(7)

which means that, at the start, the amplitude of the fun-
damental mode differs from zero, whereas the amplitude
of the second harmonic equals zero. The coefficients D;
and D, are given by [20]
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The quantities I'; and I', are the damping constants for
the fundamental and second-harmonic modes, respective-
ly. In Eq. (6) we shall restrict ourselves to the case of
zero frequency mismatch between the cavity and the
external forces (0, —w; =0). In this way we exclude the
rapidly oscillating terms. Moreover, the time ¢ and the
external amplitude F have been redefined as follows:

=L ©)
X

The s ordering in Eq. (4), which is responsible for the
operator structure of the Hamiltonian, allows us to con-
trast the classical and quantum dynamics of our system.
If the Hamiltonian [(1)-(3)] is classical (i.e., if it is a ¢
number), then the equation for the probability density has
the form of Eq. (4) without the s terms:
—(s/2) aZ/aa%)(D“qas,) (s/2)(3*/3a}?) (D} ®y) and
[;((1—s5)/2)3*®,,/9a}da;. The s terms distinguish the
class1ca1 and quantum dynamlcs quite naturally. If they
do not appear, the difference between P and Q vanishes.
The same interpretation of @, for the anharmonic oscil-
lator model is presented in [16].

T=Xt,

III. TRUNCATION

Analytic solutions of quantum Fokker-Planck equa-
tions like Eq. (4) are known only in special cases. Thus,
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some special methods have been developed to obtain ap-
proximate solutions. One of them is the statistical mo-
ment method, based on the fact that the equation for the
probability density generates an infinite hierarchic set of
equations for the statistical moments and vice versa.
However, for numerical reasons, the set of equations has
to be truncated to a finite number, which means approxi-
mation. Below, we use cumulants as statistical moments
and restrict ourselves to a Gaussian approximation (cu-
mulants higher than second order are equal to zero)
[12,16].
The cumulants are defined by the following relations:

&=(a;), (10)
B,=(ala,)—(a)(a;) , 1
B,=(ala,)—(al)(a,) , (12)
c;=(a})—(a))*, (13)
Cp=(a,a,)—(a,;){a,) . (14)

Integration by parts of the Fokker-Planck equation for
the quasidistribution ®_;,=P (the choice of a particu-
lar s is a question of taste only) allows us to write the ap-
propriate equations for the cumulants [10,16,19,21]. In
what follows, we assume that damping is included only
by way of coupling to the reservoir at zero temperature,
that is, n;=0. The first truncation (the cumulants higher
than first-order vanish) leads to the classical limit. Then,
from Eq. (4), we get the classical Bloembergen equations
[12]:

£=—F E+TFHETE (15)
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The initial conditions have the form

§1(0)=§;p, £,(0)=0. (17)

The s terms in Eq. (4) contribute nothing to the above
equations. The second-order truncation (Gaussian ap-
proximation) leads to the following set of equations:
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The set of Egs. (18)—(25), proposed for the first time by
PeFina et al. [19], is a development of the Bloembergen
equations [(15) and (16)]. The initial conditions with
respect to (7) are given by

£§1(00=E&,,, §,(0)=0,
B, ,(0)=B,(0)=C, ,(0)=C,(0)=0.

=_(Fl+r2)B12+C12§;+§1(BZ_.BX) . (25)

(26)

The s terms in Eq. (4) contribute only the term £, in Eq.
(22). Thus, the term §, represents the quantum
diffusional s terms in the Fokker-Planck equation. The
other terms in Eqgs. (18)—(25) originate in the drift terms
of the Fokker-Planck equation. The terms B, and C, in
Egs. (18) and (19) play the role of feedback terms that
pump quantum fluctuations into the classical Bloember-
gen equations. If the s terms in Eq. (4) do not appear (the
classical case) the term &, in Eq. (22) does not appear ei-
ther. In this case the subset [(20)—-(25)] with zero initial
conditions has zero solutions and consequently leads to
the first truncation [12]. The aspects of higher-order
truncation for nonlinear optical problems are discussed in
[12,16].

IV. NUMERICAL ANALYSIS

To identify chaotic behavior of a classical dynamical
system, it is convenient to use the maximal Lyapunov ex-
ponent [22]. The MLE characterizes the degree of orbital
instability, i.e., the rate of divergence of the distance be-
tween two nearby orbits. In order to get the MLE, we
use the following procedure. On applying variations
&, —&;+8; and with regard to (15) and (16), we get the
following linearized equations for the complex increment
5;:

it

fﬁ:—r 5, +8FE,+EFS 27)
d 18, +878,+£78, ,

-
dr =—T,0,—6:§; . (28)

Now, having the two sets of equations [(15) and (16)
and (27) and (28)] available, we can compute

A=1lim A_, (29)
where
1 2 172
A,=_In |3 {[Red;(n)*+[Ims,(N]} | . (30

i—1

The quantity A is referred to as the MLE. The positive
MLE points to chaotic motion. If A <0, the dynamical
system behaves nonchaotically (orderly). The definition
of quantum Lyapunov exponents has been considered by
several authors [17,23].

The concept of the classical MLE can be applied with
some modification to the quantum equations (18)—(25).
The modification originates in the fact that the concept of
trajectory loses its meaning in quantal dynamics so the
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classical Lyapunov exponents cannot be directly used in
quantum systems. Moreover, classical chaos is accom-
modated in a quantum dynamics as a transient process
with a finite lifetime 7=17g,,,.. It is known that for the
time 7> 7Ty, the behavior of quantum systems is quasi-
periodic. Thus, the quantum Lyapunov exponent whose
classical counterpart is positive has to be calculated as
(29), but with a finite time (empirically expressed)
T=Tquanyr Where 7g,,,=In( Ay /#%)/A. The quantity A4,
is the space area available for the classical motion, and
the quantity A is the classical Lyapunov exponent. The
time 7qy,,, has been introduced by Berman and Kolovsky
[24].

Let us note that in the quantum case, we deal with 14
equations of motion in real variables [B; and B, in
(18)—(25) are real]. By adding 14 linearized equations of
motion for the increments §;, we obtain 28 equations of
motion, which can be solved numerically. Below, we dis-
cuss the behavior of our system if the external driving
field F(7) is periodically modulated.

A. External driving field F= Fy(1+sinQ7)

Let us consider the driving field amplitude in the form
F=Fy(1+sinQ7), meaning that the external pump am-
plitude is modulated with a frequency Q around F; [13].
For the time-independent field F=F, (2=0) the system
does not manifest chaotic behavior. However, a change
of Q in the range 0 <) <7 leads the system from periodic
to chaotic motion or vice versa. The dynamical behavior
of our system is reflected by the Lyapunov exponents.
The MLE as a function of the modulation parameter
for the classical case [Eqgs. (15) and (16)] (dashed line) and
for the quantum case [Egs. (18)-(25)] (solid line) is plot-
ted in Fig. 1(a). For the classical case, one observes
several regions where the system behaves chaotically
(A>0), whereas elsewhere it behaves orderly (A <0). For
the quantum case, we observe only one region of chaos
1.3 <Q < 1.72, which does not overlap exactly any classi-
cal region of chaos. Generally, as is seen from Fig. 1(a),
the quantum correction reduces chaos in the system but
does not eliminate it completely. For example, for
Q=1.4, both the classical and quantum versions of the
system behave chaotically, whereas the classical MLE is
greater than quantum. This means a reduction of chaos
in the classical system due to the quantum correction.
The reduction is also reflected by the appropriate bifurca-
tion diagrams [Figs. 1(b) and 1(c)]. Another useful way to
visualize the reduction of chaos is to analyze the motion
in the phase space. However, in our case, the classical
phase space is four dimensional (Re &, Re &,, Im &, Im
&,). This means that we can compare only the motion in
the reduced phase space. For a physical interpretation it
is convenient to consider the motion in two-dimensional
intensity space I, =%, I,=1&,]% Then, instead of a
typical phase portrait we deal with an intensity portrait. In
the quantum case the intensities are the average numbers
of photons determined by {a,a, ) =|&,|>+ B,, where B, is
the | qlllglntum correction to the classical intensity
IL=1&1"

The reduction of chaos for } =1.45 is presented in the

intensity portraits of Fig. 2. However, as is seen from
Fig. 1(a), there is a small region (1.68 <Q < 1.80) where
the system behaves orderly in the classical case but the
quantum correction leads to chaos. By way of an exam-
ple for Q=1.75, the classical system, after quantum
correction, loses it orderly features and the limit cycle
[Fig. 3(a)] settles into a chaotic trajectory [Fig. 3(b)].
Generally, Lyapunov analysis shows that the transition
from classical chaos to quantum order is very common.
For example, this kind of transition appears for Q=3.5
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FIG. 1. The classical (dashed) and quantum (solid line)

MLE’s (a) and the appropriate bifurcation maps [(b) and (c)]
versus the modulated parameter ). The parameters are
§1(0) =0.1+i0.1, 52(0) =0, B],z(o):Blz(O)z C1’2(0)= ClZ(O)
=0, FI:F2=0.34, and 7022.
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FIG. 2. Transition from classical chaos (a) to quantum chaos
(b). The parameters are those of Fig. 1, but with Q=1.4.
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FIG. 3. Transition from classical order (a) to quantum chaos
(b). The parameters are those of Fig. 1, but with Q=1.75.

where chaos is reduced to periodic motion on a limit cy-
cle. Therefore, a global reduction of chaos can be said to
take place in the whole region of the parameter 0 <Q <7.
As we see from Fig. 1, there are also possible transitions
leading from classical order to quantum order. For ex-
ample, for Q=6.7, the quasiperiodic classical motion on
a torus is reduced to periodic motion on a limit circle
after the quantum correction.

Maxima of Re&;

Maxima of Re&

-2

0 2 4 6 T
FIG. 4. The classical (dashed) and quantum (solid line)

MLE’s (a) and the appropriate bifurcation maps [(b) and (¢)]

versus the pulse length 7,. The parameters are

£1(0)=0.1+i0.1, £,(0)=0, B;,(0)=B;(0)=C,,(0)=C),(0)
=0, T';,=0, T',=0.34, and F,=2.
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6 Ty

FIG. 5. The classical (dashed) and quantum (solid line)
MLE’s versus the pulse length T,. The parameters are
£1(0)=0.14i0.1, £,(0)=0, B,,(0)=B,(0)=C,,(0)=C,(0)
=0, I',=0.17, I',=0.34, and F,=2.

B. External driving field as a train
of rectangular pulses

An analysis of the classical system described by Egs.
(15) and (16) with external driving field in the form of a
train of pulses has been proposed by us in [14,15]. The
external driving field in the form of a train of pulses is
simulated by computer. The pulse length is denoted by
T, and the height of the pulse by F,. The distance be-
tween two pulses is denoted by T,. It is interesting to in-
vestigate the influence of quantum correction on the dy-
namics of the classical system [(15) and (16)]. In this sec-
tion, we consider the problem restricting ourselves only
to the study of MLE’s and bifurcation diagrams for
different damping constants I';. Generally, we can ob-
serve similar transitions from chaos to order and order to
chaos as in the case of externally modulated amplitude
F=Fy(1+sinQ7). What is the role of the damping con-
stants in the reduction of chaos? In Fig. 4 we present the
MLE as a function of the pulse length T'; for both the
classical (dashed line) and quantum (solid line) case and
the respective bifurcation maps for the damping con-
stants I';=0, I';=0.34. Figures 5 and 6 present the
respective Lyapunov exponent for different damping con-

7“ T —

-0.5 _—

0 2 4 6 T

FIG. 6. The same as in Fig. 5, but with I'; =0.34.
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FIG. 7. Chaos area as a function of the damping constant I',.
The classical case, dashed line; the quantum case, solid line.

stants, namely, I';=0.17, I';=0.34, and I';=T,=0.34.
Figures 4, 5, and 6 show that the reduction of chaotic re-
gions (A > 0) takes place with growing damping constant
I',. It is caused by the fact that the stability of the sys-
tem generally depends on damping. It is seen from the
Lyapunov spectra and bifurcation maps that the quan-
tum system is similarly sensitive to damping as the classi-
cal system. However, quantum chaos is more strongly
suppressed than classical chaos.

V. CONCLUSION

Our paper considers mainly the influence of quantum
correction on the behavior of a system (second-harmonic
generation) that is classically chaotic. The system is
damped and pumped by an external driving field. Its dy-
namics are governed by a set of ordinary differential
equations resulting from the Fokker-Planck equation.
The appearance and size of the chaotic and orderly re-
gions depend on the form of the external driving field.
The regions of chaos for the classical model do not over-
lap exactly the chaotic regions for the quantum model.
However, we find that quantum correction reduces chaos
in the classical system. The Lyapunov analysis and bifur-
cation maps show that after the quantum correction, the
number of chaotic regions is reduced, although not elim-
inated completely. Nonetheless we observe some similar-
ities between the quantum and classical bifurcation maps.
Namely, within certain regions of the parameter Q both
bifurcation maps differ slightly and this can be observed
in Figs. 1(b) and 1(c). The changes in the dynamics are
also manifested in the intensity portraits. For example,
Figs. 2 and 3 show that the basin of attraction is always
suppressed after quantum correction. In Fig. 7, we plot
the area of chaos as a function of the damping constant
I';,. By way of example, the value 0.46 for I'y=0 is the
value of the integrated field in Fig. 4(a) under the dashed
line, satisfying the condition A>0. This value is a mea-
sure of classical chaos in the global sense for the region
0<T,<7. From Fig. 7, it is clear that the quantum
chaotic system is always more strongly suppressed than
its classical counterpart.



42 K. GRYGIEL AND P. SZLACHETKA 51

[1] G. Casati, B. Chirkov, J. Ford, and F. M. Izrailev, in Sto-
chastic Behavior in Classical and Quantum Hamiltonian
Systems, edited by G. Casati and J. Ford, Lecture Notes in
Physics Vol. 93 (Springer, Berlin, 1979).

[2] D. L. Shepelyansky, Physics D 28, 103 (1987).

[3] P. W. Milonni, M. L. Shih, and J. R. Ackerhalt, Chaos in
Laser-matter Interactions (World Scientific, Singapore,
1987).

[4] Y. Pomeau, B. Dorizzi, and B. Grammaticos, Phys. Rev.
Lett. 56, 681 (1986).

[5] P. W. Milonni, J. R. Ackerhalt, and M. E. Goggin, Phys.
Rev. A 35, 1714 (1987).

[6] C. C. Gerry and E. R. Vrscay, Phys. Rev. A 39, 5717
(1989).

[7] G. J. Milburn, Phys. Rev. A 41, 6567 (1990).

[8] G. J. Milburn and C. A. Holms Phys. Rev. A 44, 4704
(1991).

[9] Instabilities and Chaos in Quantum Optics, edited by F. T.
Arecchi and R. H. Harrison (Springer-Verlag, Berlin,
1987).

[10] J. Petina, Quantum Statistics of Linear and Nonlinear Op-
tical Phenomena, 2nd ed. (Reidel, Dordrecht, 1991).

[11] E. N. Lorenz, J. Atmos. Sci. 20, 130 (1963).

[12] P. Szlachetka, K. Grygiel, J. Bajer, and J. Pefina, Phys.
Rev. A 46, 7311 (1992).

[13] K. Grygiel and P. Szlachetka, Opt. Commun. 78, 177

(1990).

[14] K. Grygiel and P. Szlachetka, Opt. Commun. 91, 241
(1992).

[15] P. Szlachetka and K. Grygiel, in Symmetry and Structural
Properties of Condensed Matter, Proceedings of the Second
International School of Theoretical Physics, Poznan 1992,
edited by W. Florek, D. Lipinski, and T. Lulek (World
Scientific, Singapore, 1993), pp. 221-236.

[16] P. Szlachetka, K. Grygiel, and J. Bajer, Phys. Rev. E 48,
101 (1993).

[17] M. Toda and K. Ikeda, Phys. Lett. A 124, 165 (1987).

[18] P. D. Drummond, K. J. McNeil, and D. F. Walls, Opt.
Acta 27, 321 (1980); 28, 211 (1981).

[19] J. Pe#ina et al. Czech. J. Phys. B 37, 1161 (1987).

[20] The general relations among the coefficients D,
Dy,...,Dyx...,, for the irreversible part of Fokker-
Planck equations are presented in P. Szlachetka, J. Phys.
A 20, 1455 (1987). .

[21] R. Schack and A. Schenzle, Phys. Rev. A 41, 3847 (1990).

[22]7J. P. Eckmann and D. Ruelle, Rev. Mod. Phys. 57, 617
(1985).

[23] F. Hakke, H. Wiedemann, and K. Zyczkowski, Ann.
Phys. 1, 531 (1992).

[24] G. P. Berman and A. R. Kolovsky, Physica D 8, 117
(1983).



